3.1465 \(\int \frac{\sqrt{c+d x}}{(a+b x)^{3/2}} \, dx\)

Optimal. Leaf size=66 \[ \frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2}}-\frac{2 \sqrt{c+d x}}{b \sqrt{a+b x}} \]

[Out]

(-2*Sqrt[c + d*x])/(b*Sqrt[a + b*x]) + (2*Sqrt[d]*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/b^
(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0332162, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {47, 63, 217, 206} \[ \frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2}}-\frac{2 \sqrt{c+d x}}{b \sqrt{a+b x}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x]/(a + b*x)^(3/2),x]

[Out]

(-2*Sqrt[c + d*x])/(b*Sqrt[a + b*x]) + (2*Sqrt[d]*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/b^
(3/2)

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x}}{(a+b x)^{3/2}} \, dx &=-\frac{2 \sqrt{c+d x}}{b \sqrt{a+b x}}+\frac{d \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{b}\\ &=-\frac{2 \sqrt{c+d x}}{b \sqrt{a+b x}}+\frac{(2 d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{b^2}\\ &=-\frac{2 \sqrt{c+d x}}{b \sqrt{a+b x}}+\frac{(2 d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{b^2}\\ &=-\frac{2 \sqrt{c+d x}}{b \sqrt{a+b x}}+\frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{b^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.217975, size = 99, normalized size = 1.5 \[ \frac{2 \left (\sqrt{d} \sqrt{b c-a d} \sqrt{\frac{b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )-\frac{b (c+d x)}{\sqrt{a+b x}}\right )}{b^2 \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x]/(a + b*x)^(3/2),x]

[Out]

(2*(-((b*(c + d*x))/Sqrt[a + b*x]) + Sqrt[d]*Sqrt[b*c - a*d]*Sqrt[(b*(c + d*x))/(b*c - a*d)]*ArcSinh[(Sqrt[d]*
Sqrt[a + b*x])/Sqrt[b*c - a*d]]))/(b^2*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int{\sqrt{dx+c} \left ( bx+a \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/2)/(b*x+a)^(3/2),x)

[Out]

int((d*x+c)^(1/2)/(b*x+a)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.61006, size = 551, normalized size = 8.35 \begin{align*} \left [\frac{{\left (b x + a\right )} \sqrt{\frac{d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \,{\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt{b x + a} \sqrt{d x + c} \sqrt{\frac{d}{b}} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right ) - 4 \, \sqrt{b x + a} \sqrt{d x + c}}{2 \,{\left (b^{2} x + a b\right )}}, -\frac{{\left (b x + a\right )} \sqrt{-\frac{d}{b}} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{b x + a} \sqrt{d x + c} \sqrt{-\frac{d}{b}}}{2 \,{\left (b d^{2} x^{2} + a c d +{\left (b c d + a d^{2}\right )} x\right )}}\right ) + 2 \, \sqrt{b x + a} \sqrt{d x + c}}{b^{2} x + a b}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((b*x + a)*sqrt(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a*b*d)*sq
rt(b*x + a)*sqrt(d*x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x) - 4*sqrt(b*x + a)*sqrt(d*x + c))/(b^2*x + a*b),
 -((b*x + a)*sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^2 + a
*c*d + (b*c*d + a*d^2)*x)) + 2*sqrt(b*x + a)*sqrt(d*x + c))/(b^2*x + a*b)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x}}{\left (a + b x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/2)/(b*x+a)**(3/2),x)

[Out]

Integral(sqrt(c + d*x)/(a + b*x)**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 1.12738, size = 177, normalized size = 2.68 \begin{align*} -\frac{{\left (\frac{\sqrt{b d} \log \left ({\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}{b} + \frac{4 \,{\left (\sqrt{b d} b c - \sqrt{b d} a d\right )}}{b^{2} c - a b d -{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}}\right )}{\left | b \right |}}{b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(b*x+a)^(3/2),x, algorithm="giac")

[Out]

-(sqrt(b*d)*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/b + 4*(sqrt(b*d)*b*c - sqrt
(b*d)*a*d)/(b^2*c - a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2))*abs(b)/b^2